a2 United States Patent

Kiperberg et al.

US009104841B2

US 9,104,841 B2
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

METHODS AND SYSTEMS FOR EXECUTING
PROTECTED CONTENT

Applicant: UNIVERSITY OF JYVASKYLA,
Jyviaskylan yliopisto (FI)

Inventors: Michael Kiperberg, Jyvaskylian

yliopisto (F1); Nezer Zaidenberg,

Jyviaskylan yliopisto (FI)

Assignee: TRULY PROTECT OY, Jyvaskylan

D

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 133 days.

Appl. No.: 13/889,609

(51) Imt.CL

GOG6F 21/00 (2013.01)

HO4L 29/06 (2006.01)
(52) US.CL

CPC .ot GO6F 21/00 (2013.01)
(58) Field of Classification Search

CPC ... HO04L 63/1433; GO6F 21/00; GO6F 21/51;
GOG6F 21/52; GOG6F 21/53; GOG6F 21/566
See application file for complete search history.

Primary Examiner — Izunna Okeke
(74) Attorney, Agent, or Firm — Barnes & Thornburg LL.P

(57) ABSTRACT

Various embodiments for enabling and protecting execution
of encrypted electronic content in a client system. In various
embodiments, there is a method for managing the state of the
cache memory of the client system. In various embodiments,
there is a method for protocol stack validation to confirm
readiness of the client system to execute encrypted electronic

Filed: May 8, 2013 - - ¢
content. In various embodiments, there is a method for pro-
Prior Publication Data tocol stack execution.
US 2014/0337637 Al Nov. 13, 2014 14 Claims, 5 Drawing Sheets
Client System 100
CPU 110
Second memory region
120
First memory region
150
Kernel 130
Kernel 160
Disabled state
210
VM 170 VM 140
D ted
coype Encrypted electronic
electronic content
block 310 content block 320

Illegal instructions

Bus 340 330

U.S. Patent Aug. 11, 2015 Sheet 1 of 5 US 9,104,841 B2

[f1g. 1

Client System 100

CPU 110 .
] Second memory region
120
First memory
region 150 Synchronization
180 Kermnel 130

‘ Kernel 1 60 “

VM 170 VM 140

U.S. Patent Aug. 11, 2015 Sheet 2 of 5 US 9,104,841 B2

[Fig. 2

Client System 100

CPU 110
L Second memory region
120
First memory region
150 Disabled state
210 Kemel 130
Kernel 170

VM 140
\ VM 140

U.S. Patent Aug. 11, 2015 Sheet 3 of 5 US 9,104,841 B2

[b1g.

Client System 100

CPU 110
Second memory region
120
First memory region
150
Kernel 130
Kernel 160
Disabled state
210
VM 170 VM 140
D ted
cevpe Encrypted electronic
electronic content lock 320
block 310 content block 3
: : Illegal instructions
Bus 340 330

U.S. Patent

[Fig. 4

Aug. 11, 2015

Download encrypted
program 403

Sheet 4 of 5

V4

Activate, via operating

system, illegal

US 9,104,841 B2

instruction handler 445

Request program run
406

T\r

Receive notice from
CPU of illegal
instructions 442

Load Kernel & VM to
first memory region,
disable memory

synchronization 409

g

Jump via VM to the
encrypted content’s

entry function 439

Request Sefver to
execute protocol stack

validation 412

Install an illegal

instruction handler 436

End
418

Fill original location of
second memory region
with illegal instructions

433

Did p rotocol
stack
validation
succeed 415
415
l
Request Decryption
key from server 421
. | 2

Copy encrypted content
to another location in sccond

memory region 430

Receive decryption
key 424

Store decryption key in

first memory region 427

Identify and erase
decrypted electronic
content in first memory
region 448

Substitute illegal

instructions with legal

instructions 451

Decrypt encrypted

electronic content 454

Store decrypted
electronic content in first

memory region 457

Did user
request
termination?
460

No 463

Yes 466

Terminate decryption

process 469

L

Erase decryption key

472

from first memory region

|

Re-enable

synchronization 475

memory

U.S. Patent Aug. 11, 2015 Sheet 5 of 5 US 9,104,841 B2

[H1g. ©

Othernodes

ﬂs

1l

5100

s —5 ——————————————————————————————— ,]—5_ N
I’ MAM — o1 \l
1 |

Load
[1
| 5105 — gl |
| !
;] CP1 K 5120
1 |
; I i = S
! ~ [¢ kK VF !
i W - BUS — 5125 I‘
: I CPn |< |

MN 1
| 1 F !
! MEM 5120 |
| Function processing, L~ |
: - Conventional OS functions Clk, 'l
| (resource allocation, Int, |
i inter-process communications, 1I
| 5160 —H houssakee.ping, gtc.) ' S _— 5140 |
1 - Functionality for implementing — [
E 5150 — protected execution environment — UUSI‘__” i:
: 5145 }
1 : [

Operating parameters ;
! | Disk !
| 5180 —T|variables — I/F 1
'\ AV]
S [/s
5190 —>»

AN

US 9,104,841 B2

1
METHODS AND SYSTEMS FOR EXECUTING
PROTECTED CONTENT

BACKGROUND

Publishers of electronic content such as games and videos
are often concerned with protecting their electronic content
from unlicensed usage, since unlicensed usage may have a
significant adverse impact on the profitability or even on
commercial viability of such publishers. Commercial elec-
tronic content often includes a simple licensing verification
program, but such a program may be bypassed by reverse
engineering the software instructions of the program.

Some publishers protect their electronic content by “obfus-
cation”, which means making software instructions difficult
for humans to understand. This method deliberately clutters
the code with useless, confusing pieces. However, one prob-
lem with this method is that obfuscated electronic content is
readable to the skilled hacker.

Some publishers protect their electronic content by encryp-
tion, using a unique key to translate their code to an unread-
able format, such that only the owner of the key can decrypt
the code. However, such protection is only effective when the
key is kept secure. Hardware based methods for keeping the
key secure are possible. However, hardware based methods
have two deficiencies. First, they require an investment in
special-purpose hardware on the user’s side, which is costly
and, therefore, not practical. Secondly, all such hardware
methods were successfully attacked by hackers.

There are existing software-based methods of encrypting
and decrypting electronic content, where decryption is per-
formed in the client system’s CPU. However, existing meth-
ods have three independent problems. Firstly, such methods
remain susceptible to hacking, since the CPU’s content is
synchronized with other parts of the client system’s memory
with respect to the decrypted content. Secondly, the protocol
stack execution in existing methods decrypts a single
encrypted instruction at a time, so an instruction that is
executed in a loop, gets decrypted on every iteration of this
loop, causing a degradation in the performance of the whole
system. Thirdly, existing methods do not test: (1) whether the
decryption will be performed on software which imitates the
functionality of hardware, or (2) whether the instructions
used to decrypt and execute the encrypted electronic content
have been properly installed. Failure to test either of these two
conditions can expose existing software-based protection
methods to failures.

SUMMARY

Described herein are software-based methods for protect-
ing encrypted electronic content from susceptibility to hack-
ing during the decryption of the electronic content, as well as
systems for implementing such methods. The present disclo-
sure also comprises implementation examples of a data pro-
cessing system adapted to carry out the methods according to
the invention and/or its embodiments/cases.

One embodiment is a method for enabling execution of
encrypted electronic content in a client system. In one par-
ticular form of such embodiment, encrypted electronic con-
tent is downloaded to a client system and a client system is
asked to run the encrypted electronic content. Also in this
particular embodiment, a virtual machine is loaded to the
client system’s first memory region and synchronization
between the first memory region and the client system’s sec-
ond memory region is disabled. Also in this particular
embodiment, an electronic verification protocol stack is vali-

10

15

20

25

30

35

40

45

50

55

60

65

2

dated, to confirm readiness of the client system to execute the
encrypted electronic content. The encrypted electronic con-
tent is copied to another location in the second memory region
of the client system and the original location of the second
memory region is filled with illegal instructions. Also in this
particular embodiment, an illegal instruction handler is
installed in the operating system of the client system CPU,
and the virtual machine jumps to the encrypted electronic
content’s entry function.

One embodiment is a method for validating an electronic
validation protocol stack to confirm readiness of a client
system to execute encrypted electronic content. In one par-
ticular form of such embodiment, a virtual machine is loaded
to a client system’s first memory region, and synchronization
between the first memory region and a second memory region
inthe client system is disabled. Also in this particular embodi-
ment, a server is requested to execute an electronic validation
protocol stack validation for an encrypted electronic content.
Also, in this particular embodiment the results of the valida-
tion protocol stack confirmation are received, and if the elec-
tronic validation protocol stack validation has succeeded, a
decryption key is requested and received from a server. Also
in this particular embodiment, the decryption key is stored in
the first memory region.

One embodiment is a method for executing encrypted elec-
tronic content. In one particular form of such embodiment, a
client system’s CPU informs a virtual machine that there are
illegal instructions, and the virtual machine becomes active.
Also in this particular embodiment, the client system’s oper-
ating system activates an illegal instruction handler, which
identifies and erases decrypted blocks in first memory region,
and finds an encrypted data block that corresponds to the
block containing the CPU’s instruction pointer in the second
memory region, deleting the illegal instructions of such
blocks, and substituting-in legal instructions that can be inter-
preted. Also in this particular embodiment the illegal instruc-
tion handler decrypts a data block with substituted-in legal
instructions, which can be interpreted by the CPU, and stores
the decrypted data block in the first memory region. Also in
this embodiment, the above-described decryption process
loops back to the beginning and continues until the execution
of the encrypted electronic content is terminated by the user.

One embodiment is a method for managing a first memory
region as part of a process for executing encrypted electronic
content. In one particular form of such embodiment, a kernel
and a virtual machine are loaded to a first memory region.
Also in this embodiment, synchronization between the first
memory region and a second memory region is disabled. Also
in this embodiment, an electronic validation protocol stack is
validated, to confirm readiness of a client system to execute
encrypted electronic content. Also in this embodiment,
encrypted electronic content is decrypted, and the decrypted
data blocks are stored. The process of decrypting and storing
data blocks continues until it is terminated by the user, then
the synchronization between the first memory region and the
second memory region is re-enabled.

Further embodiments include data processing systems,
such as client systems, for enabling execution of encrypted
electronic content. Such a client system comprises a process-
ing system comprising at least one central processing unit,
“CPU”, a memory system having a first memory regionand a
second memory region. The memory system comprises pro-
gram code instructions for carrying out the acts which imple-
ment the methods of the invention and/or its embodiments/
cases when the program code instructions are executed by the
processing system.

US 9,104,841 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments are herein described, by way of example
only, with reference to the accompanying drawings. No
attempt is made to show structural details of the embodiments
in more detail than is necessary for a fundamental under-
standing of the embodiments. In the drawings:

FIG. 1 illustrates one embodiment of a client system which
enables the execution of encrypted electronic content by the
client system, in a state where the content of the client sys-
tem’s first memory region does not differ from corresponding
content in the second memory region of the client system.

FIG. 2 illustrates one embodiment of a client system in a
state that enables the execution of encrypted electronic con-
tent by the client system, where the content of the first
memory region differs from corresponding content in the
second memory region of the client system.

FIG. 3 illustrates one embodiment of a client system which
enables the execution of encrypted electronic content by the
client system, in a state of operation.

FIG. 4 illustrates a flow diagram describing one embodi-
ment of (i) a method for enabling execution of encrypted
electronic content in a client system; (ii) a method for man-
aging the state of the first memory region of the client system
(iii) a method for protocol stack validation to confirm readi-
ness of a client system to execute encrypted electronic con-
tent, by means of an electronic validation protocol stack; and
(iv) a method for protocol stack execution where the entire
function is decrypted and then erased.

FIG. 5 schematically shows a data processing system
adapted for carrying out embodiments of the present disclo-
sure.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Where used in this application, the following terms mean
as follows:

“Client system” means any kind of consumer data unit
having a memory region and a region for processing elec-
tronic content.

“Disabled state” means that the content of the first memory
region of a client system differs substantially from corre-
sponding content in the second memory region of a client
system.

“Electronic content” means a software program, blocks of
data, or any other electronically stored information, including
but not limited to applications such as video, audio, or gaming
programs, and including gaming programs played synchro-
nously and non-synchronously among two or more people.

“Electronic validation protocol stack™ is a group of pro-
gram instructions, which may be part of a software protocol
stack or which may be separate, that are used to decrypt and
execute the instructions of encrypted electronic content.

“Encrypted electronic content” means “electronic content”
which has been encrypted in some way.

“First memory region” means a memory region that is part
of or in direct content with a CPU. This may be a memory
region in the cache part of a CPU, a memory region in a
non-cache region of a CPU, or a memory region that is exter-
nal to the CPU but which is connected directly to the CPU. In
a first memory region, “connected directly” means that there
is a direct connection between the first memory region and the
CPU, but the first memory region is not part of or connected
to the main memory region.

“Gaming” means war games, sports, gambling and all
other games.

10

15

20

25

30

35

40

45

50

55

60

65

4

Included are games played by a single person, games
played synchronously by multiple players, and games played
non-synchronously by multiple players. In this context,
“played synchronously” means either that multiple players
are acting at the same time, or players respond to each other
essentially in real-time.

“Illegal instructions” means a sequence of bytes that, when
encountered by a client system CPU, result in a notice to the
operating system of the client system, which contains the
CPU, that such bytes cannot be interpreted.

“Illegal instructions handler” means a module included in
the VM that: (1) identifies illegal instructions, deletes them,
and substitutes-in legal instructions, and (2) identifies blocks
that are encrypted and decrypts them, so that the decrypted
results may be stored in a location in the first memory region.

“Kernel” means the component of the client system’s oper-
ating system that manages the client system’s processing
resources.

“Legal instructions” means a sequence of bytes that, when
encountered by a client system’s CPU, can be interpreted by
the CPU.

“Memory region” means a physical space that has a
memory capability, and that stores electronic content. It may
be, without limitation, any part or all of a CPU, a main
memory, a cache memory, or an external standalone memory.

“Operating System” means software that is executed in
privileged mode by the CPU and has full control of the hard-
ware of the client system as well as any other software that is
executed on the client system. The operating system includes
the kernel and may include other modules.

“Protocol stack validation” means a validation of any or all
of'the following: (1) that decryption of encrypted content will
occur at a legal computer or other legal client, as opposed to
avirtual machine; (2) that the VM has been properly installed,
(3) other criteria checked to insure that the client system can
execute one or more embodiments of the methods.

“Second memory region” means a memory region that is
part of or in direct content with a main memory. This may be
a memory region within the main memory, or a memory
region that is external to the main memory but which is
connected directly to the main memory. In a second memory
region, “connected directly” means that there is a direct con-
nection between the second memory region and the main
memory, but the second memory region is not part of or
connected to the CPU.

“Synchronization” means that the content of the first
memory region of a client system does not differ substantially
from corresponding content in the second memory region of
a client system.

“Virtual Machine” or “VM” means one or more operating
system software modules installed by the user of a client
system which is able to (i) disable the cache memory syn-
chronization between a first memory region and a second
memory region, and (ii) decrypt encrypting instruction by
means of an illegal instructions handler.

FIG. 1 illustrates one embodiment of the client system 100
whose CPU 110 interfaces with the client system’s second
memory region 120 that contains the software instructions of
a kernel 130 and a VM 140. The client system’s CPU 110
contains or is in direct contact with the first memory region
150 that reflects the content of the second memory region
120, in particular it reflects the software instructions of the
kernel 160 and the VM 170. This reflection is possible due to
a physical link between the CPU and the second memory
region of the client system, which allows for their synchro-

US 9,104,841 B2

5

nization 180, such that the content of the first memory region
does not differ from the corresponding content in the second
memory region.

FIG. 2 illustrates one embodiment of a client system 100
whose CPU 110 interfaces with the client system’s second
memory region 120 that contains the software instructions of
a kernel 160 and a VM 170. The CPU 110 contains or is in
direct contact with the first memory region 150 that does not
reflect the content of the second memory region 120, in par-
ticular it does not reflect the software instructions of the
kernel 160 and the VM 170 in the first memory region. This
reflection is not possible despite the existence of a physical
link between the CPU and the second memory region of the
client system, since the link is in a disabled state 210.

FIG. 3 illustrates one embodiment of a client system 100
whose CPU 110 contains or is in direct contact with the first
memory region 150. The first memory region contains the
software instructions of a kernel 160 and a VM 170 installed
by the user of the client system. The first memory region now
also contains the decrypted electronic content in the first
memory region 310. The client system’s second memory
region 120 contains the software instruction of a kernel 130
and a VM 140 and encrypted electronic content 320, and a
part of the second memory region is filled with illegal instruc-
tions 330. The client system’s bus 340 maintains synchroni-
zation between the first memory region and the second
memory region for blocks of data and instructions, but does
not maintain synchronization between the software instruc-
tions of the kernel and the VM in the first memory region and
the second memory region whose synchronization has been
altered to a disabled state 210.

FIG. 4 illustrates a flow diagram of one embodiment of
various methods for enabling execution of encrypted elec-
tronic content in a client system.

In one embodiment, the client downloads encrypted elec-
tronic content along with a VM 403, and then asks the VM to
run the encrypted electronic content 406. The VM loads a
kernel and the VM itself to the client system’s first memory
region and then disables the memory synchronization 409. An
electronic validation protocol stack is validated to confirm
readiness of the client system to execute the encrypted elec-
tronic content 412-427. The VM copies all of the encrypted
electronic content to another location in the client system’s
second memory region 430. The VM fills the original location
of the client system’s second memory region with illegal
instructions 433. The VM installs in the kernel an illegal
instruction handler 436. The VM jumps to the encrypted
electronic content’s entry function 439.

In a first alternative embodiment of the method just
described, the encrypted electronic content comprises a pro-
gram selected from the group of word processing program,
spreadsheet manipulation program, and visual presentation
program.

In a second alternative embodiment of the method just
described, the encrypted electronic content comprises audio
or video data.

In a third alternative embodiment of the method just
described, the encrypted electronic content comprises an
interactive gaming program.

In one embodiment, an electronic validation protocol stack
is validated to confirm readiness of a client system to execute
an encrypted program, as a condition for the client system’s
receipt of the decryption key. The client requests a server to
execute a protocol stack validation 412. Client receives noti-
fication of protocol stack validation results 415. If the proto-
col stack validation has failed, the execution of the encrypted
electronic content terminates 418. If the protocol stack vali-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

dation has succeeded, the client system requests a decryption
key from the server 421 and receives the decryption key 424.
The client system stores the decryption key in the first
memory region 427.

In a first alternative embodiment of the method just
described, the encrypted electronic content comprises a pro-
gram selected from the group of word processing program,
spreadsheet manipulation program, and visual presentation
program.

In a second alternative embodiment of the method just
described, the encrypted electronic content comprises audio
or video data.

In a third alternative embodiment of the method just
described, the encrypted electronic content comprises an
interactive gaming program.

In one embodiment, encrypted electronic content is
executed in the CPU. The CPU informs the operating system
of an illegal instruction 442. The operating system activates
the illegal instruction handler 445. The illegal instruction
handler first identifies decrypted blocks of the encrypted elec-
tronic content in a first memory region, and, if there are any,
erases them 448. The illegal instruction handler then finds a
current encrypted data block, deletes the illegal instructions
of'such block, and substitutes them legal instructions 451. For
this FIG. 4, “current” encrypted data is data which was copied
at the step represented by element 430. Using the decryption
key, the illegal instruction handler decrypts the encrypted data
block with legal instructions that have been substituted for
illegal instructions 454. The decrypted data block is stored in
the first memory region 457. If the user did not terminate the
encrypted electronic content 460, then method described
loops back 463 to step 442, and if the user terminates the
encrypted electronic content 466 then the decryption process
terminates 469. Instructions of the decrypted data blocks will
be executed automatically to provide the content, and this
execution begins at the end of each iteration of the decryption
process.

In a first alternative embodiment of the method just
described, the encrypted electronic content comprises a pro-
gram selected from the group of word processing program,
spreadsheet manipulation program, and visual presentation
program.

In a second alternative embodiment of the method just
described, the encrypted electronic content comprises audio
or video data.

In a third alternative embodiment of the method just
described, the encrypted electronic content comprises an
interactive gaming program.

In one embodiment, a client system’s first memory region
is managed as part of a process for executing encrypted elec-
tronic content. The VM loads a kernel and the VM itself to the
first memory region memory and then disables memory syn-
chronization between the first memory region and the second
memory region 409. An electronic validation protocol stack is
validated to confirm readiness ofthe client systems to execute
the encrypted electronic content 412 through 427. Encrypted
electronic content is decrypted and stored 442 through 466.
The decryption and storage process is terminated 469, and
memory synchronization in re-enabled 475.

In a first alternative embodiment, electronic content com-
prises a program selected from the group of word processing
program, spreadsheet manipulation program, and visual pre-
sentation program.

In a second alternative embodiment of the method just
described, the encrypted electronic content comprises audio
or video data.

US 9,104,841 B2

7

In a third alternative embodiment of the method just
described, the encrypted electronic content comprises an
interactive gaming program.

In a fourth alternative embodiment of the method just
described, the decryption key is erased from the first memory
region 472.

In a fifth alternative embodiment of the method just
described, the decryption key is erased from the first memory
region 472 and the electronic content comprises a program
selected from the group of word processing program, spread-
sheet manipulation program, and visual presentation pro-
gram.

In a sixth alternative embodiment of the method just
described the decryption key is erased from the first memory
region 472 and the encrypted electronic content comprises
audio or video data.

In a seventh alternative embodiment of the method just
described, the decryption key is erased from the first memory
region 472 and the encrypted electronic content comprises an
interactive gaming program.

FIG. 5 schematically shows a data processing system
adapted for carrying out embodiments of the present disclo-
sure. The architecture of the computer, generally denoted by
reference numeral 5100, comprises one or more central pro-
cessing units CP1 . . . CPn, generally denoted by reference
numeral 5110.

Embodiments comprising multiple processing units 5110
are preferably provided with a load balancing unit 5115 that
balances processing load among the multiple processing units
5110. The multiple processing units 5110 may be imple-
mented as separate processor components or as physical pro-
cessor cores or virtual processors within a single component
case. The one or more processing units 5110 preferably com-
prise a cache memory system to speed up retrieval of memory
contents. In a typical implementation the computer architec-
ture 5100 comprises a network interface 5120 for communi-
cating with various data networks, which are generally
denoted by reference sign DN. The data networks DN may
include local-area networks, such as an Ethernet network,
and/or wide-area networks, such as the internet. The data
processing system may also reside in a smart telephone, in
which case reference numeral 5125 denotes a mobile network
interface, through which the smart telephone may communi-
cate with various access networks AN.

The computer architecture 5100 may also comprise a local
user interface 5140. Depending on implementation, the user
interface 5140 may comprise local input-output circuitry for
a local user interface, such as a keyboard, mouse and display
(not shown). The computer architecture also comprises
memory 5150 for storing program instructions, operating
parameters and variables. Reference numeral 5160 denotes a
program suite for the server computer 5100.

The computer architecture 5100 also comprises circuitry
for various clocks, interrupts and the like, and these are gen-
erally depicted by reference numeral 5130. The computer
architecture 5100 further comprises a storage interface 5145
to a storage system 5190. When the server computer 5100 is
switched off, the storage system 5190 may store the software
that implements the processing functions, and on power-up,
the software is read into semiconductor memory 5150. The
storage system 5190 also retains operating and variables over
power-off periods. The various elements 5110 through 5150
intercommunicate via a bus 5105, which carries address sig-
nals, data signals and control signals, as is well known to
those skilled in the art.

The inventive techniques may be implemented in the com-
puter architecture 5100 as follows. The program suite 5160

10

15

20

25

30

35

40

45

50

55

60

65

8

comprises program code instructions for instructing the pro-
cessor or set of processors 5110 to execute the functions of the
inventive method in its various embodiments.

In this description, numerous specific details are set forth.
However, the embodiments/cases of the invention may be
practiced without some of these specific details. In other
instances, well-known hardware, materials, structures and
techniques have not been shown in detail in order not to
obscure the understanding of this description. In this descrip-
tion, references to “one embodiment” and “one case” mean
that the feature being referred to may be included in at least
one embodiment/case of the invention. Moreover, separate
references to “one embodiment”, “some embodiments”, “one
case”, or “some cases” in this description do not necessarily
refer to the same embodiment/case. lllustrated embodiments/
cases are not mutually exclusive, unless so stated and except
as will be readily apparent to those of ordinary skill in the art.
Thus, the invention may include any variety of combinations
and/or integrations of the features of the embodiments/cases
described herein. Also herein, flow diagrams illustrate non-
limiting embodiment/case examples of the methods, and
block diagrams illustrate non-limiting embodiment/case
examples of the devices. Some operations in the flow dia-
grams may be described with reference to the embodiments/
cases illustrated by the block diagrams. However, the meth-
ods of the flow diagrams could be performed by
embodiments/cases of the invention other than those dis-
cussed with reference to the block diagrams, and embodi-
ments/cases discussed with reference to the block diagrams
could perform operations different from those discussed with
reference to the flow diagrams. Moreover, although the flow
diagrams may depict serial operations, certain embodiments/
cases could perform certain operations in parallel and/or in
different orders from those depicted. Moreover, the use of
repeated reference numerals and/or letters in the text and/or
drawings is for the purpose of simplicity and clarity and does
not in itself dictate a relationship between the various
embodiments/cases and/or configurations discussed. Further-
more, methods and mechanisms of the embodiments/cases
will sometimes be described in singular form for clarity.
However, some embodiments/cases may include multiple
iterations of a method or multiple instantiations of a mecha-
nism unless noted otherwise. For example, when a controller
or an interface are disclosed in an embodiment/case, the
scope of the embodiment/case is intended to also cover the
use of multiple controllers or interfaces.

Certain features of the embodiments/cases, which may
have been, for clarity, described in the context of separate
embodiments/cases, may also be provided in various combi-
nations in a single embodiment/case. Conversely, various
features of the embodiments/cases, which may have been, for
brevity, described in the context of a single embodiment/case,
may also be provided separately or in any suitable sub-com-
bination. The embodiments/cases are not limited in their
applications to the details of the order or sequence of steps of
operation of methods, or to details of implementation of
devices, set in the description, drawings, or examples. In
addition, individual blocks illustrated in the figures may be
functional in nature and do not necessarily correspond to
discrete hardware elements. While the methods disclosed
herein have been described and shown with reference to par-
ticular steps performed in a particular order, it is understood
that these steps may be combined, sub-divided, or reordered
to form an equivalent method without departing from the
teachings of the embodiments/cases. Accordingly, unless
specifically indicated herein, the order and grouping of the
steps is not a limitation of the embodiments/cases. Embodi-

US 9,104,841 B2

9

ments/cases described in conjunction with specific examples
are presented by way of example, and not limitation. More-
over, it is evident that many alternatives, modifications and
variations will be apparent to those skilled in the art. Accord-
ingly, it is intended to embrace all such alternatives, modifi-
cations and variations that fall within the spirit and scope of
the appended claims and their equivalents.
What is claimed is:
1. A method for enabling execution of encrypted electronic
content in a client system, comprising:
retrieving encrypted electronic content;
asking a virtual machine to execute the encrypted program;
loading a kernel and the virtual machine to a first memory
region in a CPU, and disabling synchronization between
the first memory region and a second memory region in
a client system;

validating an electronic validation protocol stack to con-
firm readiness of the client system to execute the
encrypted electronic content;

copying the encrypted electronic content to another loca-

tion in the second memory region;

filling the original location of the second memory region

with illegal instructions;

installing in the operating system an illegal instruction

handler;

jumping to the encrypted electronic content’s entry func-

tion;

wherein the validation includes:

requesting a server to execute an electronic validation
protocol stack validation for an encrypted electronic
content;

receiving notification of the validation protocol stack
confirmation results;

if the electronic validation protocol stack validation has
succeeded, requesting a decryption key from a server;

receiving the requested decryption key; and

storing the decryption key in the first memory region.

2. The method of claim 1, in which the encrypted electronic
content comprises a program selected from the group of word
processing program, spreadsheet manipulation program, and
visual presentation program.

3. The method of claim 1, in which the encrypted electronic
content comprises audio and video data.

4. The method of claim 1, in which the encrypted electronic
content comprises a gaming program.

5. The method of claim 1, in which the encrypted electronic
content comprises a video.

6. A method for managing the first memory region as part
of'a process for executing encrypted electronic content, com-
prising:

loading a kernel and a virtual machine to the first memory

region;

disabling synchronization between the first memory region

and the second memory region;

validating an electronic validation protocol stack to con-

firm readiness of a client system to execute encrypted
electronic content;

decrypting the encrypted electronic content, and storing

decrypted data blocks;

repeating said decrypting and storing data blocks until

execution is terminated; and

re-enabling synchronization between the first memory

region and the second memory region,

wherein the validating includes:

25

35

40

45

50

55

10

requesting a server to execute an electronic validation
protocol stack validation for an encrypted electronic
content;

receiving notification of the validation protocol stack
confirmation results;

if the electronic validation protocol stack validation has
succeeded, requesting a decryption key from a server;

receiving the requested decryption key; and

storing the decryption key in the first memory region.

7. The method of claim 6 further comprising erasing the
encryption key from the first memory region.

8. The method of claim 6, in which the encrypted electronic
content comprises a program selected from the group of word
processing program, spreadsheet manipulation program, and
visual presentation program.

9. The method of claim 6, in which the encrypted electronic
content comprises audio and video data.

10. The method of claim 6, in which the encrypted elec-
tronic content comprises a gaming program.

11. The method of claim 7, in which the encrypted elec-
tronic content comprises a program selected from the group
of word processing program, spreadsheet manipulation pro-
gram, and visual presentation program.

12. The method of claim 7, in which the encrypted elec-
tronic content comprises audio and video data.

13. The method of claim 7, in which the encrypted elec-
tronic content comprises a gaming program.

14. A client system for enabling execution of encrypted
electronic content, the client system comprising:

a processing system comprising at least one central pro-

cessing unit <“CPU”>,
a memory system having a first memory region and a
second memory region, the memory system comprising
program code instructions for carrying out the following
acts when the program code instructions are executed by
the processing system:
retrieving encrypted electronic content;
asking a virtual machine to execute the encrypted program;
loading a kernel and the virtual machine to a first memory
region in a CPU, and disabling synchronization between
the first memory region and a second memory region in
a client system;
validating an electronic validation protocol stack to con-
firm readiness of the client system to execute the
encrypted electronic content;
copying the encrypted electronic content to another loca-
tion in the second memory region;
filling the original location of the second memory region
with illegal instructions;
installing in the operating system an illegal instruction
handler;
jumping to the encrypted electronic content’s entry func-
tion, wherein the validating includes:
requesting a server to execute an electronic validation
protocol stack validation for an encrypted electronic
content;

receiving notification of the validation protocol stack
confirmation results;

if the electronic validation protocol stack validation has
succeeded, requesting a decryption key from a server;

receiving the requested decryption key; and

storing the decryption key in the first memory region.

#* #* #* #* #*

